OFFSET
1,6
COMMENTS
The number of partitions of n into 3 parts whose "middle" part divides n. - Wesley Ivan Hurt, Oct 21 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i * (floor(n/i) - floor((n-1)/i).
a(n) = the sum of the divisors < n/2. - Robert G. Wilson v, Dec 23 2017
a(n) = 1 iff n is an odd prime or n=4. - Robert G. Wilson v, Dec 23 2017
G.f.: Sum_{k>=1} k * x^(3*k) / (1 - x^k). - Ilya Gutkovskiy, May 30 2020
G.f.: Sum_{k >= 3} x^k/(1 - x^k)^2. Cf. A023645. - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+2))*( n*q^(3*n+4) - (n + 1)*q^(2*n+2) - (n - 1)*q^(n+2) + n )/( (1 - q^n )*(1 - q^(n+2))^2 ). (In equation 1 in Arndt, after combining the two n = 0 summands to get t/(1 - t), apply the operator t*d/dt and then set t = q^2 and x = 1. Cf. A001065.) - Peter Bala, Jan 22 2021
EXAMPLE
a(12) = 10; the partitions of 12 into two distinct parts are (11,1), (10,2), (9,3), (8,4) and (7,5). 1 divides 11, 2 divides 10, 3 divides 9 and 4 divides 8, so the sum of the smaller parts gives 1 + 2 + 3 + 4 = 10.
MAPLE
with(numtheory):
a := n -> add( d, d = divisors(n) minus {floor((n+1)/2), n} ):
seq(a(n), n = 1..100); # Peter Bala, Jan 13 2021
MATHEMATICA
Table[Sum[i (Floor[n/i] - Floor[(n - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 100}]
f[n_] := Plus @@ Select[Divisors@n, 2 # < n &]; Array[f, 75] (* Robert G. Wilson v, Dec 23 2017 *)
PROG
(PARI) A296955(n) = sumdiv(n, d, (d<(n/2))*d); \\ Antti Karttunen, Sep 25 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 22 2017
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved