login
A219525
T(n,k)=Sum of neighbor maps: log base 2 of the number of nXk binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their king-move neighbors in a random 0..1 nXk array
1
1, 1, 1, 3, 1, 3, 4, 3, 3, 4, 4, 4, 9, 4, 4, 6, 4, 12, 12, 4, 6, 7, 6, 12, 16, 12, 6, 7, 7, 7, 18, 16, 16, 18, 7, 7, 9, 7, 21, 24, 16, 24, 21, 7, 9, 10, 9, 21, 28, 24, 24, 28, 21, 9, 10, 10, 10, 27, 28, 28, 36, 28, 28, 27, 10, 10, 12, 10, 30, 36, 28, 42, 42, 28, 36, 30, 10, 12, 13, 12, 30, 40
OFFSET
1,4
COMMENTS
Table starts
..1..1..3..4..4..6..7..7..9.10.10.12.13.13.15.16.16
..1..1..3..4..4..6..7..7..9.10.10.12.13.13.15.16
..3..3..9.12.12.18.21.21.27.30.30.36.39.39.45
..4..4.12.16.16.24.28.28.36.40.40.48.52.52
..4..4.12.16.16.24.28.28.36.40.40.48.52
..6..6.18.24.24.36.42.42.54.60.60.72
..7..7.21.28.28.42.49.49.63.70.70
..7..7.21.28.28.42.49.49.63.70
..9..9.27.36.36.54.63.63
.10.10.30.40.40.60.70
.10.10.30.40.40.60
.12.12.36.48.48
LINKS
FORMULA
Empirical: T(n,k)=3*((n-1)/3)+(n%3)^2-3*(n%3)+3+((k-1)/3)*(n*3-(((n%3)^2-(n%3))*3)/2)+((k%3)^2-3*(k%3)+2)*((n*3-(((n%3)^2-(n%3))*3)/2)/3) where '%'=modulo and '/'=integer divide truncating towards zero
EXAMPLE
Some solutions for n=3 k=3
..1..0..0....1..0..1....0..1..0....1..1..0....0..0..1....1..1..0....0..1..1
..0..0..0....0..1..0....0..0..1....1..1..1....1..0..0....0..0..0....1..0..1
..1..1..0....0..0..0....1..0..0....0..1..1....0..1..1....1..0..0....0..1..0
CROSSREFS
Sequence in context: A081772 A204217 A296955 * A050121 A029152 A320279
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 21 2012
STATUS
approved