login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293589
E.g.f.: exp(x^2/(1 + x + x^2)).
2
1, 0, 2, -6, 12, 0, -240, 2520, -18480, 60480, 937440, -21621600, 220207680, -311351040, -34490776320, 724669545600, -6625031212800, -49471604582400, 3116728731916800, -58942964451571200, 335128094882380800, 15732203147781120000, -600651799248659558400
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Product_{k>0} exp(x^(3*k-1)) / exp(x^(3*k)).
(n+3)*(n+2)*(n+1)*n*a(n)+(2*n+1)*(n+3)*(n+2)*a(n+1)+(3*n+4)*(n+3)*a(n+2)+2*(n+3)*a(n+3)+a(n+4)=0. - Robert Israel, Oct 27 2019
MAPLE
rec:= (n+3)*(n+2)*(n+1)*n*b(n)+(2*n+1)*(n+3)*(n+2)*b(n+1)+(3*n+4)*(n+3)*b(n+2)+2*(n+3)*b(n+3)+b(n+4)=0:
f:= gfun:-rectoproc({rec, b(0)=1, b(1)=0, b(2)=2, b(3)=-6}, b(n), remember):
map(f, [$0..30]); # Robert Israel, Oct 27 2019
MATHEMATICA
CoefficientList[Series[E^(x^2/(1 + x + x^2)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x^2/(1+x+x^2))))
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(3*k-1)-x^(3*k)))))
CROSSREFS
Sequence in context: A342544 A342540 A328449 * A293117 A293122 A014452
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 12 2017
STATUS
approved