login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(x^2/(1 + x + x^2)).
2

%I #12 Oct 27 2019 18:01:53

%S 1,0,2,-6,12,0,-240,2520,-18480,60480,937440,-21621600,220207680,

%T -311351040,-34490776320,724669545600,-6625031212800,-49471604582400,

%U 3116728731916800,-58942964451571200,335128094882380800,15732203147781120000,-600651799248659558400

%N E.g.f.: exp(x^2/(1 + x + x^2)).

%H Robert Israel, <a href="/A293589/b293589.txt">Table of n, a(n) for n = 0..449</a>

%F E.g.f.: Product_{k>0} exp(x^(3*k-1)) / exp(x^(3*k)).

%F (n+3)*(n+2)*(n+1)*n*a(n)+(2*n+1)*(n+3)*(n+2)*a(n+1)+(3*n+4)*(n+3)*a(n+2)+2*(n+3)*a(n+3)+a(n+4)=0. - _Robert Israel_, Oct 27 2019

%p rec:= (n+3)*(n+2)*(n+1)*n*b(n)+(2*n+1)*(n+3)*(n+2)*b(n+1)+(3*n+4)*(n+3)*b(n+2)+2*(n+3)*b(n+3)+b(n+4)=0:

%p f:= gfun:-rectoproc({rec,b(0)=1,b(1)=0,b(2)=2,b(3)=-6},b(n),remember):

%p map(f, [$0..30]); # _Robert Israel_, Oct 27 2019

%t CoefficientList[Series[E^(x^2/(1 + x + x^2)), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Oct 13 2017 *)

%o (PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x^2/(1+x+x^2))))

%o (PARI) N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(3*k-1)-x^(3*k)))))

%Y Cf. A111884, A293590.

%K sign

%O 0,3

%A _Seiichi Manyama_, Oct 12 2017