login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293588
E.g.f.: exp(x + x^6/6).
3
1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 6763681, 86692321, 605765161, 3027624601, 12109056961, 41169011521, 5063607974881, 94197184734241, 939457659787201, 6572292677455681, 36141156689382361, 166238526616664041, 20612479896229156321
OFFSET
0,7
COMMENTS
These are the telephone numbers T^(6)_n of [Artioli et al., p. 7].
LINKS
Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Simonetta Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017.
FORMULA
a(n) = a(n-1) + (n-1)!/(n-6)! * a(n-6).
a(n) = Sum_{j=0..floor(n/6)} n!/(6^j*j!*(n-6*j)!). - G. C. Greubel, Mar 07 2021
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x+x^6/6], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 11 2017 *)
Table[Sum[n!/(6^k*k!*(n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* G. C. Greubel, Mar 07 2021 *)
PROG
(PARI) my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + x^6/6))) \\ Michel Marcus, Oct 13 2017
(Sage)
f=factorial;
[sum( f(n)/(6^k*f(k)*f(n-6*k)) for k in [0..n/3]) for n in [0..30]] # G. C. Greubel, Mar 07 2021
(Magma)
F:= Factorial;
[(&+[ F(n)/(6^k*F(k)*F(n-6*k)): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, Mar 07 2021
CROSSREFS
Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), A118934 (m=4), A052501 (m=5), this sequence (m=6), A053497 (m=7).
Sequence in context: A306452 A238250 A361658 * A365969 A203959 A362319
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Oct 12 2017
STATUS
approved