login
A291750
Compound filter: a(n) = P(A003557(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.
20
1, 4, 7, 8, 16, 67, 29, 19, 18, 154, 67, 80, 92, 277, 277, 53, 154, 94, 191, 173, 497, 631, 277, 109, 50, 862, 75, 302, 436, 2557, 497, 169, 1129, 1432, 1129, 142, 704, 1771, 1541, 214, 862, 4561, 947, 668, 328, 2557, 1129, 179, 98, 236, 2557, 905, 1432, 199, 2557, 355, 3161, 4006, 1771, 2630, 1892, 4561, 564, 593, 3487, 10297, 2279, 1487, 4561, 10297, 2557
OFFSET
1,2
COMMENTS
A000203 (sigma(n)) is a function of this sequence, because formula
A000203(n) = A092261(n) * A295294(n)
can be rewritten as a relation:
where A057521(n) = A064549(A003557(n)), thus A000203(n) is a function of A003557(n) and A048250(n), the values that are packed here into a(n).
A001615 (Dedekind's psi) is a function of this sequence, because it can be written as A001615(n) = A003557(n)*A048250(n).
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A003557(n) + A048250(n))^2) - A003557(n) - 3*A048250(n)).
PROG
(PARI)
A003557(n) = n/factorback(factor(n)[, 1]); \\ This function from Charles R Greathouse IV, Nov 17 2014
A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
CROSSREFS
Cf. A000027, A000203, A001615, A003557, A048250, A291751 (rgs-version of this filter).
Sequence in context: A344581 A270216 A237599 * A007285 A225430 A295325
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 04 2017
STATUS
approved