login
A277570
Numbers k such that k/6^m == 4 (mod 6), where 6^m is the greatest power of 6 that divides k.
6
4, 10, 16, 22, 24, 28, 34, 40, 46, 52, 58, 60, 64, 70, 76, 82, 88, 94, 96, 100, 106, 112, 118, 124, 130, 132, 136, 142, 144, 148, 154, 160, 166, 168, 172, 178, 184, 190, 196, 202, 204, 208, 214, 220, 226, 232, 238, 240, 244, 250, 256, 262, 268, 274, 276, 280
OFFSET
1,1
COMMENTS
Positions of 4 in A277544.
Numbers having 4 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program. Every term is even; see A277574.
LINKS
FORMULA
a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
MATHEMATICA
z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
p[b_, d_] := Flatten[Position[a[b], d]]
p[6, 1] (* A277567 *)
p[6, 2] (* A277568 *)
p[6, 3] (* A277569 *)
p[6, 4] (* A277570 *)
p[6, 5] (* A277571 *)
PROG
(PARI) is(n)=(n/6^valuation(n, 6))%6==4 \\ Charles R Greathouse IV, Nov 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 01 2016
STATUS
approved