login
Numbers k such that k/6^m == 4 (mod 6), where 6^m is the greatest power of 6 that divides k.
6

%I #10 Feb 09 2021 01:54:55

%S 4,10,16,22,24,28,34,40,46,52,58,60,64,70,76,82,88,94,96,100,106,112,

%T 118,124,130,132,136,142,144,148,154,160,166,168,172,178,184,190,196,

%U 202,204,208,214,220,226,232,238,240,244,250,256,262,268,274,276,280

%N Numbers k such that k/6^m == 4 (mod 6), where 6^m is the greatest power of 6 that divides k.

%C Positions of 4 in A277544.

%C Numbers having 4 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program. Every term is even; see A277574.

%H Clark Kimberling, <a href="/A277570/b277570.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 5n + O(log n). - _Charles R Greathouse IV_, Nov 03 2016

%t z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]

%t p[b_, d_] := Flatten[Position[a[b], d]]

%t p[6, 1] (* A277567 *)

%t p[6, 2] (* A277568 *)

%t p[6, 3] (* A277569 *)

%t p[6, 4] (* A277570 *)

%t p[6, 5] (* A277571 *)

%o (PARI) is(n)=(n/6^valuation(n,6))%6==4 \\ _Charles R Greathouse IV_, Nov 03 2016

%Y Cf. A277544, A277567, A277571, A277574.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Nov 01 2016