OFFSET
2,1
COMMENTS
The Fabius function F(x) is the smooth monotone increasing function on [0, 1] satisfying F(0) = 0, F(1) = 1, F'(x) = 2*F(2*x) for 0 < x < 1/2, F'(x) = 2*F(2*(1-x)) for 1/2 < x < 1. It is infinitely differentiable at every point in the interval, but is nowhere analytic. It assumes rational values at dyadic rationals.
REFERENCES
Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
LINKS
Yuri Dimitrov, G. A. Edgar, Solutions of Self-differential Functional Equations
G. A. Edgar, Examples of self differential functions
J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Probability Theory and Related Fields, June 1966, Volume 5, Issue 2, pp 173-174.
Wikipedia, Fabius function
EXAMPLE
MATHEMATICA
c[0] = 1;
c[k_] := c[k] = Sum[((-1)^(k - r) c[r])/(1 + 2 k - 2 r)!, {r, 0, k - 1}]/(4^k - 1);
t[n_] := Mod[2 n + Sum[(-1)^Binomial[n, k], {k, 1, n}], 3];
f[x_] := Module[{k = Numerator[x], n = Log2[Denominator[x]]}, Sum[((-1)^(q + t[p - 1]) 2^(-(n - 1) n/2) (1/2 - p + k)^(n - 2 q) c[q])/(4^q (n - 2 q)!), {p, 1, k}, {q, 0, n/2}]];
Table[Numerator[f[3/2^n]], {n, 2, 20}]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Vladimir Reshetnikov, Oct 14 2016
STATUS
approved