login
A345214
Primes p such that the sum of 2^k for k such that 2^k < p and p+2^k is prime is greater than p.
2
67, 73, 149, 641, 659, 1039, 1063, 1087, 1117, 2081, 2111, 2153, 2459, 2549, 4201, 4273, 4327, 4447, 4567, 4903, 5077, 5107, 8219, 8501, 8537, 8819, 8861, 8999, 9011, 9209, 9239, 10061, 10331, 16417, 16447, 16573, 16603, 16927, 16963, 16993, 17389, 17467, 17977, 18757, 19777, 20143, 20563, 21487
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 641 is a member because 641+2 = 643, 641+32 = 673, 641+128 = 769 and 641+512=1153 are prime and 2+32+128+512 = 674 > 641.
MAPLE
filter:= proc(p) local i;
convert(select(t -> isprime(p+t), [seq(2^i, i=1..ilog2(p))]), `+`) > p
end proc:
select(filter, [seq(ithprime(i), i=1..10000)]);
MATHEMATICA
filterQ[p_] := Total@Select[2^Range[Length[IntegerDigits[p, 2]]-1], PrimeQ[p+#]&] > p;
Select[Prime[Range[10000]], filterQ] (* Jean-François Alcover, Jun 11 2021 *)
CROSSREFS
Sequence in context: A033243 A241897 A225626 * A277429 A039432 A043255
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jun 10 2021
STATUS
approved