login
A276534
a(n) = a(n-1) * a(n-4) * (a(n-2) * a(n-3) + 1) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
2
1, 1, 1, 1, 1, 2, 4, 12, 108, 10584, 27454896, 94148851006224, 246222177535609206635748240, 62371770277951054762478578990896212287188931341600, 3750595553941161278345366267513070968239986992860645038477600300348697171928615364721752014400
OFFSET
0,6
COMMENTS
Inspired by Somos-5 sequence.
a(n) is integer for n >= 0.
a(n+1)/a(n) is integer for n >= 0.
LINKS
FORMULA
a(n) * a(n-5) = a(n-1) * a(n-4) + a(n-1) * a(n-2) * a(n-3) * a(n-4).
a(4-n) = a(n).
Let b(n) = b(n-4) * (b(n-2) * (b(0) * b(1) * ... * b(n-3))^2 + 1) with b(0) = b(1) = b(2) = b(3) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0.
EXAMPLE
a(5) = a(4) * b(4) = 1 * 2 = 2,
a(6) = a(5) * b(5) = 2 * 2 = 4,
a(7) = a(6) * b(6) = 4 * 3 = 12,
a(8) = a(7) * b(7) = 12 * 9 = 108.
PROG
(Ruby)
def A(k, n)
a = Array.new(2 * k + 1, 1)
ary = [1]
while ary.size < n + 1
i = 0
k.downto(1){|j|
i += 1
i *= a[j] * a[-j]
}
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276534(n)
A(2, n)
end
CROSSREFS
Sequence in context: A327563 A326950 A001696 * A326969 A304986 A013333
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 16 2016
STATUS
approved