login
A326950
Number of T_0 antichains of nonempty subsets of {1..n}.
7
1, 2, 4, 12, 107, 6439, 7726965, 2414519001532, 56130437161079183223017, 286386577668298409107773412840148848120595
OFFSET
0,2
COMMENTS
The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
FORMULA
Binomial transform of A245567, if we assume A245567(0) = 1.
EXAMPLE
The a(0) = 1 through a(3) = 12 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1},{2}} {{3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
MATHEMATICA
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Table[Length[Select[Subsets[Subsets[Range[n], {1, n}]], stableQ[#, SubsetQ]&&UnsameQ@@dual[#]&]], {n, 0, 3}]
CROSSREFS
Antichains of nonempty sets are A014466.
T_0 set-systems are A326940.
The covering case is A245567.
Sequence in context: A325502 A038791 A327563 * A001696 A276534 A326969
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 08 2019
EXTENSIONS
a(5)-a(8) from Andrew Howroyd, Aug 14 2019
a(9), based on A245567, from Patrick De Causmaecker, Jun 01 2023
STATUS
approved