login
A276408
Analog of A265434 that counts only primitive words.
2
1, 0, 1, 1, 0, 3, 0, 5, 3, 7, 16, 12, 50, 44, 123, 195, 301, 718, 928, 2244, 3459, 6650, 12870, 21045, 44473, 73554, 146579, 267360, 487604, 955299, 1692761, 3325604, 6070308, 11513648, 21880800, 40476571, 78174296, 145039331
OFFSET
0,6
LINKS
G. Alkauskas, The modular group and words in its two generators, arXiv:1512.02596 [math.NT], 2015-2017.
G. Alkauskas, The modular group and words in its two generators, Lithuanian Math. J. 57(1) (2017), 1-12.
Jason Bell and Marni Mishna, On the Complexity of the Cogrowth Sequence, arXiv:1805.08118 [math.CO], 2018.
FORMULA
G.f.: 2 - 1/T(x), where T(x) is the g.f. of A265434.
CROSSREFS
Sequence in context: A037284 A225058 A002123 * A225744 A275393 A029840
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 14 2016
EXTENSIONS
Name edited, terms a(20) and beyond added by Andrey Zabolotskiy, Aug 03 2022
STATUS
approved