login
A225744
The number of isomorphism classes of connected, Generalized Alexander quandles of order n.
0
1, 0, 1, 1, 3, 0, 5, 3, 8, 0, 9, 3, 11, 0, 3, 9, 15, 0, 17, 3, 5, 0, 21, 5, 34, 0, 35, 5, 27, 0, 29, 17, 9, 0, 15, 18, 35, 0, 11, 9, 39, 0, 41, 9, 24, 0, 45, 21, 76, 0, 15, 11, 51, 0, 27, 19, 17, 0, 57, 15, 59, 0, 40, 97, 33, 0, 65, 15, 21, 0, 69, 37, 71, 0, 39, 17, 45, 0, 77, 34, 218, 0, 81, 15, 45, 0, 27, 27, 87, 0, 55, 21, 29, 0, 51, 43, 95, 0, 72, 34
OFFSET
1,5
COMMENTS
Given a group G and an automorphism f of G define the binary operation * on G by x*y = f(xy^(-1))y. Then (G,*) is a quandle. We call this a Generalized Alexander quandle. If G is abelian then (G,*) is an Alexander quandle (see A193024). (G,*) is connected if the group generated by the right translations of (G,*) is transitive on G.
LINKS
J. Scott Carter, A Survey of Quandle Ideas, arXiv:1002.4429 [math.GT]
W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, Quandle Colorings of Knots and Applications, arXiv preprint arXiv:1312.3307, 2013
PROG
(GAP)
IsConnected:=function(A)
local B, LL;
B:=TransposedMat(A);
LL:=List(B, x->PermList(x));
return IsTransitive(Group(LL), [1..Length(A)]);
end;;
MakeGAlex:=function(f, g)
local e, n, QM, i, j;
e:=Elements(g);
n:=Length(e);
QM:=List([1..n], t->[1..n]);
for i in [1..n] do
for j in [1..n] do
QM[i][j]:=Position(e, Image(f, e[i]*e[j]^(-1))*e[j]);
od;
od;
return QM;
end;;
a:=[];;
for n in [1..100] do
a[n]:=0;
N:=NrSmallGroups(n);
for u in [1..N] do
g:=SmallGroup(n, u);
ag:=AutomorphismGroup(g);;
eag:=List(ConjugacyClasses(ag), Representative);
for t in eag do
QM:=MakeGAlex(t, g);
if IsConnected(QM) then a[n]:=a[n]+1; fi;
od;
od;
od;;
a;
CROSSREFS
See also Index to OEIS under quandles.
Sequence in context: A225058 A002123 A276408 * A275393 A029840 A144670
KEYWORD
nonn
AUTHOR
W. Edwin Clark, Aug 04 2013
STATUS
approved