OFFSET
1,5
COMMENTS
Given a group G and an automorphism f of G define the binary operation * on G by x*y = f(xy^(-1))y. Then (G,*) is a quandle. We call this a Generalized Alexander quandle. If G is abelian then (G,*) is an Alexander quandle (see A193024). (G,*) is connected if the group generated by the right translations of (G,*) is transitive on G.
LINKS
J. Scott Carter, A Survey of Quandle Ideas, arXiv:1002.4429 [math.GT]
W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, Quandle Colorings of Knots and Applications, arXiv preprint arXiv:1312.3307, 2013
PROG
(GAP)
IsConnected:=function(A)
local B, LL;
B:=TransposedMat(A);
LL:=List(B, x->PermList(x));
return IsTransitive(Group(LL), [1..Length(A)]);
end;;
MakeGAlex:=function(f, g)
local e, n, QM, i, j;
e:=Elements(g);
n:=Length(e);
QM:=List([1..n], t->[1..n]);
for i in [1..n] do
for j in [1..n] do
QM[i][j]:=Position(e, Image(f, e[i]*e[j]^(-1))*e[j]);
od;
od;
return QM;
end;;
a:=[];;
for n in [1..100] do
a[n]:=0;
N:=NrSmallGroups(n);
for u in [1..N] do
g:=SmallGroup(n, u);
ag:=AutomorphismGroup(g);;
eag:=List(ConjugacyClasses(ag), Representative);
for t in eag do
QM:=MakeGAlex(t, g);
if IsConnected(QM) then a[n]:=a[n]+1; fi;
od;
od;
od;;
a;
CROSSREFS
KEYWORD
nonn
AUTHOR
W. Edwin Clark, Aug 04 2013
STATUS
approved