OFFSET
1,1
COMMENTS
Let 'alpha' be an arbitrary angle in a random spherical triangle T and 'a' be the side opposite alpha. (The sphere has radius 1; vertices of T are independent and uniform.) If some other side is constrained to be Pi/2, then E(alpha a) = 3.05... . - [Comment adapted from Steven Finch's abstract]
LINKS
Steven R. Finch, Correlation between Angle and Side , arXiv:1012.0781 [math.PR] 2010.
FORMULA
(1/4) * integral_{0..Pi} (2- 2F1(1/2,1/2,2,cos(t)^2) cos(t))t dt, where 2F1 is the hypergeometric function.
A faster formula given by David Broadhurst:
- integral_{Pi/2..Pi} (sin(t)+t cos(t))/AGM(1,sin(t)) dt, where AGM is the arithmetic-geometric mean.
EXAMPLE
3.0538319164380270202505577773873339755247078810970758249549723062...
MATHEMATICA
m = - NIntegrate[(Sin[t] + t Cos[t])/ArithmeticGeometricMean[1, Sin[t]], {t, Pi/2, Pi}, WorkingPrecision -> 100];
RealDigits[m][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jul 26 2016
STATUS
approved