login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276226
a(n+3) = 2*a(n+2) + a(n+1) + a(n) with a(0)=0, a(1)=6, a(2)=8.
1
0, 6, 8, 22, 58, 146, 372, 948, 2414, 6148, 15658, 39878, 101562, 258660, 658760, 1677742, 4272904, 10882310, 27715266, 70585746, 179769068, 457839148, 1166033110, 2969674436, 7563221130, 19262149806, 49057195178, 124939761292, 318198867568, 810394691606, 2063928012072, 5256449583318, 13387221870314, 34094821336018
OFFSET
0,2
FORMULA
Let p = (4*(61 + 9*sqrt(29)))^(1/3), q = (4*(61 - 9*sqrt(29)))^(1/3), and x = (1/6)*(4 + p + q) then x^n = (1/6)*(2*A276225(n) + a(n)*(p + q) + A077939(n-1)*(p^2 + q^2)).G.f.: 2*(3*x - 2*x^2)/(1 - 2*x - x^2 - x^3).
MATHEMATICA
LinearRecurrence[{2, 1, 1}, {0, 6, 8}, 50]
CoefficientList[Series[2 (3 x - 2 x^2)/(1 - 2 x - x^2 - x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 25 2016 *)
PROG
(Magma) I:=[0, 6, 8]; [n le 3 select I[n] else 2*Self(n-1)+ Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
(PARI) concat(0, Vec(2*(3*x-2*x^2)/(1-2*x-x^2-x^3) + O(x^99))) \\ Altug Alkan, Aug 25 2016
CROSSREFS
Sequence in context: A024306 A024868 A262199 * A034761 A085796 A280641
KEYWORD
nonn,easy
AUTHOR
G. C. Greubel, Aug 24 2016
STATUS
approved