login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276229
a(n+3) = -a(n+2) - 2*a(n+1) + a(n) with a(0)=0, a(1)=0, a(2)=1.
1
0, 0, 1, -1, -1, 4, -3, -6, 16, -7, -31, 61, -6, -147, 220, 68, -655, 739, 639, -2772, 2233, 3950, -11188, 5521, 20805, -43035, 6946, 99929, -156856, -36056, 449697, -534441, -401009, 1919588, -1652011, -2588174, 7811784, -4287447, -13924295, 30310973
OFFSET
0,6
COMMENTS
Essentially the same as A077978. - Georg Fischer, Oct 02 2018
FORMULA
G.f.: x^2/(1 + x + 2*x^2 - x^3).
Let P = (b-c)*(b-d), Q = (c-b)*(b-d), R = (d-b)*(d-c), (b, c, d) be the three roots of x^3 = 2*x^2 + x + 1, then a(n) = P^(-1)*b^(1-n) + Q^(-1)*c^(1-n) + R^(-1)*d^(1-n).
a(2*n) = -3*a(2*n-2) - 6*a(2*n-4) + a(2*n-6).
MATHEMATICA
LinearRecurrence[{-1, -2, 1}, {0, 0, 1}, 50]
CoefficientList[Series[x^2/(1 + x + 2 x^2 - x^3), {x, 0, 39}], x] (* Michael De Vlieger, Aug 25 2016 *)
PROG
(Magma) I:=[0, 0, 1]; [n le 3 select I[n] else -Self(n-1)- 2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
(PARI) concat([0, 0], Vec(x^2/(1+x+2*x^2-x^3) + O(x^99))) \\ Altug Alkan, Aug 25 2016
CROSSREFS
Sequence in context: A328650 A343891 A232328 * A077955 A077978 A192986
KEYWORD
sign,easy
AUTHOR
G. C. Greubel, Aug 24 2016
STATUS
approved