login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276228
a(n+3) = -a(n+2) - 2*a(n+1) + a(n) with a(0)=3, a(1)=-1, a(2)=-3.
2
3, -1, -3, 8, -3, -16, 30, -1, -75, 107, 42, -331, 354, 350, -1389, 1043, 2085, -5560, 2433, 10772, -21198, 2087, 51081, -76453, -23622, 227609, -256818, -222022, 963267, -776041, -1372515, 3887864, -1918875, -7229368, 14954982, -2415121, -34724211, 54509435, 12523866
OFFSET
0,1
LINKS
FORMULA
G.f.: (3 + 2*x + 2*x^2)/(1 + x + 2*x^2 - x^3).
Let (b, c, d) be the three roots of x^3 = 2*x^2 + x + 1, then a(n) = b^(-n) + c^(-n) + d^(-n) = A276225(-n).
a(2*n) = -3*a(2*n-2) - 6*a(2*n-4) + a(2*n-6).
a(n) = 2*A276229(n) + 2*A276229(n+1) + 3*A276229(n+2).
MATHEMATICA
LinearRecurrence[{-1, -2, 1}, {3, -1, -3}, 50]
CoefficientList[Series[(3 + 2 x + 2 x^2)/(1 + x + 2 x^2 - x^3), {x, 0, 38}], x] (* Michael De Vlieger, Aug 25 2016 *)
nxt[{a_, b_, c_}]:={b, c, a-2b-c}; NestList[nxt, {3, -1, -3}, 40][[All, 1]] (* Harvey P. Dale, Dec 19 2022 *)
PROG
(Magma) I:=[3, -1, -3]; [n le 3 select I[n] else -Self(n-1)- 2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
(PARI) Vec((3+2*x+2*x^2)/(1+x+2*x^2-x^3) + O(x^99)) \\ Altug Alkan, Aug 25 2016
CROSSREFS
Sequence in context: A046544 A011088 A352794 * A188938 A156368 A240665
KEYWORD
sign,easy
AUTHOR
G. C. Greubel, Aug 24 2016
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved