# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a263068 Showing 1-1 of 1 %I A263068 #8 Mar 23 2016 12:55:58 %S A263068 1,545835,14623910308237,874531783382503604463, %T A263068 74896283763383392805211587121,7868854300758955660834916406038038395, %U A263068 943457762940832669626002608045124343895474045,124069835911824710311393852646151897334844371419287295 %N A263068 Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one or more components by one. %H A263068 Alois P. Heinz, Table of n, a(n) for n = 0..50 %F A263068 a(n) ~ sqrt(c) * d^n / (Pi*n)^(7/2), where d = 222082591.60172024210290001176855308841678706675284935653958249024021852... is the root of the equation 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8 = 0 and c = 0.065002105820899877029614597832047121767362853... . - _Vaclav Kotesovec_, Mar 23 2016 %t A263068 With[{k = 8}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* _Vaclav Kotesovec_, Mar 22 2016 *) %Y A263068 Column k=8 of A262809. %K A263068 nonn %O A263068 0,2 %A A263068 _Alois P. Heinz_, Oct 08 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE