OFFSET
1,1
COMMENTS
The similar constant Q_3 = zeta(3) / (Sum_{k>=1} (-1)^(k+1) / (k^3 * binomial(2k, k))) evaluates to 5/2.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
David Bailey, Jonathan Borwein, David Bradley, Experimental determination of Apéry-like identities for zeta(2n+2), arXiv:math/0505270 [math.NT], 2005.
FORMULA
Equals 2*zeta(5)/6F5(1,1,1,1,1,1; 3/2,2,2,2,2; -1/4).
EXAMPLE
2.09486862201003699385024929373294163029675874856778182740127587837438...
MATHEMATICA
Q5 = Zeta[5]/Sum[(-1)^(k+1)/(k^5*Binomial[2k, k]), {k, 1, Infinity}]; RealDigits[Q5, 10, 103] // First
PROG
(PARI) zeta(5)/suminf(k=1, (-1)^(k+1)/(k^5*binomial(2*k, k))) \\ Michel Marcus, Sep 14 2015
CROSSREFS
Cf. A013663.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
AUTHOR
Jean-François Alcover, Sep 14 2015
STATUS
approved