login
A143415
Another sequence of Apery-like numbers for the constant 1/e: a(n) = 1/(n+1)!*Sum_{k = 0..n-1} C(n-1,k)*(2*n-k)!.
34
0, 1, 5, 41, 481, 7421, 142601, 3288205, 88577021, 2731868921, 94969529101, 3675200329841, 156725471006105, 7302990263511541, 369216917569411601, 20130327811188977621, 1177435382675193700021, 73546210385434763486705
OFFSET
0,3
COMMENTS
This sequence is a modified version of A143414.
LINKS
FORMULA
a(n) = 1/(n+1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!.
a(n) = 1/(n*(n+1))*A143414(n) for n > 0.
Recurrence relation: a(0) = 0, a(1) = 1, (n-1)*(n+1)*a(n) - (n-2)*n*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1) for n >= 2. 1/e = 1/2 - 2 * Sum_{n = 1..inf} (-1)^(n+1)/(n*(n+2)*a(n)*a(n+1)) = 1/2 - 2*[1/(3*1*5) - 1/(8*5*41) + 1/(15*41*481) - 1/(24*481*7421) + ...] .
Conjectural congruences: for r >= 0 and prime p, calculation suggests the congruences a(p^r*(p+1)) == a(p^r) (mod p^(r+1)) may hold.
a(n) = ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020
MAPLE
a := n -> 1/(n+1)!*add (binomial(n-1, k)*(2*n-k)!, k = 0..n-1): seq(a(n), n = 0..19);
# Alternative:
A143415 := n -> `if`(n=0, 0, ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1)):
seq(simplify(A143415(n)), n = 0..17); # Peter Luschny, May 14 2020
MATHEMATICA
Table[(1/(n+1)!)*Sum[Binomial[n-1, k]*(2*n-k)!, {k, 0, n-1}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)
PROG
(PARI) for(n=0, 25, print1((1/(n+1)!)*sum(k=0, n-1, binomial(n-1, k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sequence in context: A032188 A240996 A346982 * A056545 A362111 A325888
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Aug 14 2008
STATUS
approved