login
A260434
Permutation of natural numbers: a(1) = 1, a(2n) = A257803(1+a(n)), a(2n+1) = A257804(a(n)), where A257803 and A257804 give the positions of odd and even terms in A233271, the infinite trunk of inverted binary beanstalk.
4
1, 4, 2, 12, 6, 7, 3, 30, 19, 18, 10, 21, 11, 9, 5, 74, 48, 52, 32, 49, 31, 25, 15, 54, 36, 27, 16, 24, 14, 17, 8, 172, 125, 118, 85, 128, 89, 76, 51, 119, 86, 75, 50, 64, 43, 38, 26, 132, 92, 83, 61, 68, 45, 41, 28, 60, 40, 35, 22, 42, 29, 23, 13, 383, 314, 275, 219, 266, 208, 201, 152, 283, 227, 207, 159, 174, 129, 127, 88
OFFSET
1,2
COMMENTS
This sequence can be represented as a binary tree. Each left hand child is produced as A257803(1+n), and each right hand child as A257804(n), when the parent contains n:
|
...................1...................
4 2
12......../ \........6 7......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
30 19 18 10 21 11 9 5
74 48 52 32 49 31 25 15 54 36 27 16 24 14 17 8
etc.
Note how this is a mirror image of the tree shown in A260432.
FORMULA
a(1) = 1, a(2n) = A257803(1+a(n)), a(2n+1) = A257804(a(n)).
As a composition of other permutations:
a(n) = A260432(A054429(n)).
a(n) = A260430(A260432(n)).
PROG
(Scheme, with memoizing macro definec)
(definec (A260434 n) (cond ((<= n 1) n) ((even? n) (A257803 (+ 1 (A260434 (/ n 2))))) (else (A257804 (A260434 (/ (- n 1) 2))))))
CROSSREFS
Inverse: A260433.
Related permutations: A260432, A260430, A054429.
Cf. also A233271, A257806.
Sequence in context: A077015 A077016 A191436 * A243344 A293603 A201825
KEYWORD
nonn,tabf,look
AUTHOR
Antti Karttunen, Jul 27 2015
STATUS
approved