login
A260433
Permutation of natural numbers: a(1) = 1, a(A257803(1+n)) = 2*a(n), a(A257804(n)) = 1 + 2*a(n), where A257803 and A257804 give the positions of odd and even terms in A233271, the infinite trunk of inverted binary beanstalk.
3
1, 3, 7, 2, 15, 5, 6, 31, 14, 11, 13, 4, 63, 29, 23, 27, 30, 10, 9, 127, 12, 59, 62, 28, 22, 47, 26, 55, 61, 8, 21, 19, 255, 126, 58, 25, 119, 46, 125, 57, 54, 60, 45, 95, 53, 111, 123, 17, 20, 43, 39, 18, 254, 24, 118, 511, 124, 253, 117, 56, 51, 239, 93, 44, 94, 251, 115, 52, 109, 110, 121, 91, 122, 16, 42, 38, 510, 191, 107, 223, 252, 116, 50, 247, 35, 41
OFFSET
1,2
FORMULA
a(1) = 1; for n > 1, if A257800(n) = 0 [when n is one of the terms of A257804] a(n) = 1 + 2*a(A257808(n)), otherwise [when n is one of the terms of A257803] a(n) = 2*a(A257807(n)-1).
As a composition of other permutations:
a(n) = A054429(A260431(n)).
a(n) = A260431(A260430(n)).
PROG
(Scheme, with memoizing macro definec)
(definec (A260433 n) (cond ((<= n 1) n) ((zero? (A257800 n)) (+ 1 (* 2 (A260433 (A257808 n))))) (else (* 2 (A260433 (+ -1 (A257807 n)))))))
CROSSREFS
Inverse: A260434.
Related permutations: A260431, A260430, A054429.
Cf. also A233271, A257806.
Sequence in context: A163917 A377558 A266417 * A243343 A255565 A227351
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 27 2015
STATUS
approved