OFFSET
1,4
COMMENTS
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
FORMULA
a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020
EXAMPLE
The a(1) = 1 through a(8) = 18 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
((o)(o)) (ooo(o)) (ooo(oo))
(o(o)(o)) (oooo(o))
(o(o(o))) ((oo)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o)(o))
(oo(o(o)))
((o)(o)(o))
(o((o)(o)))
MATHEMATICA
sseo[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Select[Union[Sort/@Tuples[sseo/@c]], Length[Union[DeleteCases[#, {}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sseo[n]], {n, 10}]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 03 2020
EXTENSIONS
Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020
STATUS
approved