login
A331933
Number of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex.
10
1, 1, 1, 2, 4, 6, 12, 18, 33, 52, 90, 142, 242, 384, 639, 1028, 1688, 2716, 4445, 7161, 11665, 18839, 30595, 49434, 80199, 129637, 210079, 339750, 550228, 889978, 1440909, 2330887, 3772845, 6103823, 9878357, 15982196, 25863454, 41845650, 67713550, 109559443
OFFSET
1,4
COMMENTS
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
FORMULA
a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020
EXAMPLE
The a(1) = 1 through a(8) = 18 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
((o)(o)) (ooo(o)) (ooo(oo))
(o(o)(o)) (oooo(o))
(o(o(o))) ((oo)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o)(o))
(oo(o(o)))
((o)(o)(o))
(o((o)(o)))
MATHEMATICA
sseo[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Select[Union[Sort/@Tuples[sseo/@c]], Length[Union[DeleteCases[#, {}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sseo[n]], {n, 10}]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.
Sequence in context: A259941 A007436 A052847 * A052823 A063516 A306315
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 03 2020
EXTENSIONS
Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020
STATUS
approved