login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258903
E.g.f.: 2 - exp(2) + Sum_{n>=1} 2^n * exp(3*x^n) / n!.
2
1, 6, 30, 78, 426, 582, 12450, 4758, 407010, 2218182, 19172370, 360438, 4755166050, 3213222, 85631151090, 5099958831318, 54483404779650, 258673542, 11939347971403410, 2326095798, 5556296851712151330, 35398724239897109862, 10235928407592878130, 188311523478, 758680053859872239555010
OFFSET
0,2
LINKS
FORMULA
E.g.f.: 2 - exp(3) + Sum_{n>=1} 3^n * exp(2*x^n) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 6*x + 30*x^2/2! + 78*x^3/3! + 426*x^4/4! + 582*x^5/5! +...
where
A(x) = 2 - exp(2) + 2*exp(3*x) + 2^2*exp(3*x^2)/2! + 2^3*exp(3*x^3)/3! + 2^4*exp(3*x^4)/4! + 2^5*exp(3*x^5)/5! +...
A(x) = 2 - exp(3) + 3*exp(2*x) + 3^2*exp(2*x^2)/2! + 3^3*exp(2*x^3)/3! + 3^4*exp(2*x^4)/4! + 3^5*exp(2*x^5)/5! +...
PROG
(PARI) {a(n) = local(A=1); A = 2-exp(2) + sum(m=1, n, 2^m/m!*exp(3*x^m +x*O(x^n))); if(n==0, 1, n!*polcoeff(A, n))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = 2-exp(3) + sum(m=1, n, 3^m/m!*exp(2*x^m +x*O(x^n))); if(n==0, 1, n!*polcoeff(A, n))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A258899.
Sequence in context: A215906 A305163 A038039 * A050972 A259918 A002444
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 20 2015
STATUS
approved