login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258902
E.g.f.: Series_Reversion(x - x^2/2 - x^3/3).
0
1, 1, 5, 35, 355, 4585, 72485, 1353275, 29150275, 711535825, 19409915525, 585181872275, 19321831403875, 693431767653625, 26876449852377125, 1118833620294264875, 49786969727179559875, 2358371859530852790625, 118483568521991801253125, 6292649927564072269071875
OFFSET
1,3
FORMULA
E.g.f. satisfies: A(x) = Integral 1/(1 - A(x) - A(x)^2) dx.
a(n) ~ 12^(n-1/2) * n^(n-1) / (5^(1/4) * exp(n) * (5*sqrt(5)-7)^(n-1/2)). - Vaclav Kotesovec, Jun 15 2015
Conjecture: +19*a(n) +21*(-2*n+3)*a(n-1) -4*(3*n-5)*(3*n-7)*a(n-2)=0. - R. J. Mathar, Jun 07 2016
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 5*x^3/3! + 35*x^4/4! + 355*x^5/5! + 4585*x^6/6! +...
where A(x - x^2/2 - x^3/3) = x.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - x^2/2 - x^3/3, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 15 2015 *)
PROG
(PARI) {a(n) = local(A=x); A = serreverse(x - x^2/2 - x^3/3 + x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {a(n) = local(A=x); for(i=1, n, A = intformal(1/(1 - A - A^2 + x*O(x^n)))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A360611 A201367 A233860 * A371028 A125864 A210996
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2015
STATUS
approved