login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258900
E.g.f.: S(x) = Series_Reversion( Integral 1/(1-x^4)^(1/4) dx ), where the constant of integration is zero.
3
1, -6, -1764, -7700616, -147910405104, -8310698364852576, -1085420895640591777344, -284168646775526186095019136, -134459287943928269154814258953984, -106506405136317713669903020280294647296
OFFSET
0,2
FORMULA
Let e.g.f. C(x) = Sum_{n>=0} a(n)*x^(4*n)/(4*n)! and e.g.f. S(x) = Sum_{n>=0} a(n)*x^(4*n+1)/(4*n+1)!, then C(x) and S(x) satisfy:
(1) C(x)^4 + S(x)^4 = 1,
(2) S'(x) = C(x),
(3) C'(x) = -S(x)^3/C(x)^2,
(4) C(x)^3 * C'(x) + S(x)^3 * S'(x) = 0,
(5) S(x)/C(x) = Integral 1/C(x)^4 dx,
(6) S(x)/C(x) = Series_Reversion( Integral 1/(1+x^4) dx ) = Series_Reversion( Sum_{n>=0} (-1)^n * x^(4*n+1)/(4*n+1) ).
(7) S(x)^2/C(x)^2 = tan( 2 * Integral S(x)/C(x) dx ).
(8) C(x)^2 + I*S(x)^2 = exp( 2*I * Integral S(x)/C(x) dx ).
EXAMPLE
E.g.f. with offset 0 is C(x) and e.g.f. with offset 1 is S(x) where:
C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! -...
S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! -...
such that C(x)^4 + S(x)^4 = 1:
C(x)^4 = 1 - 24*x^4/4! + 8064*x^8/8! + 2128896*x^12/12! + 52932870144*x^16/16! +...
S(x)^4 = 24*x^4/4! - 8064*x^8/8! - 2128896*x^12/12! - 52932870144*x^16/16! -...
Related Expansions.
(1) The series reversion of S(x) is Integral 1/(1-x^4)^(1/4) dx:
Series_Reversion(S(x)) = x + 6*x^5/5! + 6300*x^9/9! + 56133000*x^13/13! +...
1/(1-x^4)^(1/4) = 1 + 6*x^4/4! + 6300*x^8/8! + 56133000*x^12/12! + 1992160170000*x^16/16! +...+ A258899(n)*x^(4*n)/(4*n)! +...
(2) d/dx S(x)/C(x) = 1/C(x)^4:
1/C(x)^4 = 1 + 24*x^4/4! + 32256*x^8/8! + 285272064*x^12/12! +...
S(x)/C(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! +...+ A258901(n)*x^(4*n+1)/(4*n+1)! +...
where
Series_Reversion(S(x)/C(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 - x^21/21 +...
PROG
(PARI) /* E.g.f. Series_Reversion(Integral 1/(1-x^4)^(1/4) dx): */
{a(n)=local(S=x); S = serreverse( intformal( 1/(1-x^4 +x*O(x^(4*n)))^(1/4) )); (4*n+1)!*polcoeff(S, 4*n+1)}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* E.g.f. C(x) with offset 0: */
{a(n)=local(S=x, C=1+x); for(i=1, n, S=intformal(C +x*O(x^(4*n))); C=1-intformal(S^3/C^2 +x*O(x^(4*n))); ); (4*n)!*polcoeff(C, 4*n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* E.g.f. S(x) with offset 1: */
{a(n)=local(S=x, C=1+x); for(i=1, n+1, S=intformal(C +x*O(x^(4*n))); C=1-intformal(S^3/C^2 +x*O(x^(4*n+1))); ); (4*n+1)!*polcoeff(S, 4*n+1)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 14 2015
STATUS
approved