OFFSET
0,3
COMMENTS
In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, Asymptotic formula
FORMULA
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)^8)). - Ilya Gutkovskiy, May 28 2018
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 12 2015
STATUS
approved