login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255965
Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7).
8
1, 1, 9, 45, 201, 819, 3357, 13329, 52215, 199686, 750733, 2774793, 10112184, 36357280, 129131448, 453379226, 1574884565, 5415956550, 18450934294, 62303210591, 208624947952, 693066815809, 2285129922950, 7480504628754, 24320897894515, 78557786077315
OFFSET
0,3
COMMENTS
In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)).
LINKS
Vaclav Kotesovec, Asymptotic formula
FORMULA
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)^8)). - Ilya Gutkovskiy, May 28 2018
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A000041 (m=1), A000219 (m=2), A000294 (m=3), A000335 (m=4), A000391 (m=5), A000417 (m=6), A000428 (m=7).
Sequence in context: A111640 A024209 A179855 * A180796 A189274 A270567
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 12 2015
STATUS
approved