login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7).
8

%I #9 May 29 2018 00:46:57

%S 1,1,9,45,201,819,3357,13329,52215,199686,750733,2774793,10112184,

%T 36357280,129131448,453379226,1574884565,5415956550,18450934294,

%U 62303210591,208624947952,693066815809,2285129922950,7480504628754,24320897894515,78557786077315

%N Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7).

%C In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)).

%H Vaclav Kotesovec, <a href="/A255965/b255965.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="/A255965/a255965.txt">Asymptotic formula</a>

%F G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)^8)). - _Ilya Gutkovskiy_, May 28 2018

%t nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!),{k,1,nmax}],{x,0,nmax}],x]

%Y Cf. A000041 (m=1), A000219 (m=2), A000294 (m=3), A000335 (m=4), A000391 (m=5), A000417 (m=6), A000428 (m=7).

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Mar 12 2015