login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255962
Number of repeating products of any subset of {1, 2, 3, ..., n}.
0
0, 1, 3, 7, 15, 37, 75, 167, 359, 785, 1571, 3447, 6895, 14367, 29783, 61303, 122607, 250783, 501567, 1018031, 2053407, 4127231, 8254463, 16610879, 33311679, 66737871, 133719583, 267778623, 535557247, 1072160511, 2144321023, 4291006911, 8584417343, 17171483103, 34348627135, 68706410943
OFFSET
1,3
FORMULA
a(n) = 2^n - 1 - A060957(n) = A000225(n) - A060957(n).
EXAMPLE
a(3) = (number of possible subsets of {1,2,3}) - |{1, 2, 3, 1*2, 1*3, 2*3, 1*2*3}| = 2^3-1 - |{1,2,3,6}| = 3. Equivalently, there are three repeating products (2, 3, and 6) so a(3) = 3.
MATHEMATICA
(* Script not convenient for n > 24 *) f[n_] := Block[{lst = Times @@@ Subsets[Range@ n, n]}, 2^n - 1 - Length@ Select[Tally@ lst, Last@ # > 1 &]]; Array[f, 16] (* Michael De Vlieger, Mar 13 2015 *)
CROSSREFS
Sequence in context: A335780 A373767 A183557 * A190571 A317881 A018020
KEYWORD
nonn
AUTHOR
Derek Orr, Mar 11 2015
STATUS
approved