login
A253394
Number of (n+1) X (5+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
1
304, 250, 316, 465, 666, 932, 1269, 1693, 2201, 2814, 3527, 4360, 5309, 6394, 7611, 8980, 10497, 12182, 14031, 16064, 18277, 20690, 23299, 26124, 29161, 32430, 35927, 39672, 43661, 47914, 52427, 57220, 62289, 67654, 73311, 79280, 85557, 92162, 99091
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>13.
Empirical for n mod 2 = 0: a(n) = (4/3)*n^3 + 13*n^2 + (5/3)*n + 164 for n>8.
Empirical for n mod 2 = 1: a(n) = (4/3)*n^3 + 13*n^2 + (5/3)*n + 161 for n>8.
Empirical g.f.: x*(304 - 662*x + 174*x^2 + 625*x^3 - 509*x^4 + 50*x^5 + 37*x^6 + 3*x^7 - 9*x^8 + 5*x^9 - 2*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)). - Colin Barker, Dec 12 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..1....0..0..0..0..1..1....1..1..1..1..1..1....1..1..0..1..0..1
..0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..0..0....1..1..0..1..0..1
..0..0..0..0..0..0....0..0..0..0..0..1....1..1..1..1..1..1....1..1..0..1..0..1
..0..0..0..0..1..0....0..0..0..0..0..1....1..1..0..0..0..0....1..1..0..1..0..1
..1..1..1..0..1..0....1..1..1..1..0..1....1..1..1..1..1..1....1..1..0..1..0..1
CROSSREFS
Column 5 of A253397.
Sequence in context: A332130 A291132 A328277 * A214608 A158932 A270303
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved