login
A249280
Repeatedly apply 'Reverse and add' to n. a(n) gives the number of steps needed to reach a sum containing each digit from 0 to 9 at least once.
1
38, 37, 35, 36, 54, 34, 45, 35, 48, 53, 52, 33, 51, 44, 32, 34, 50, 47, 43, 52, 33, 51, 44, 32, 34, 50, 47, 43, 42, 33, 51, 44, 32, 34, 50, 47, 43, 42, 31, 51, 44, 32, 34, 50, 47, 43, 42, 31, 41, 44, 32, 34, 50, 47, 43, 42, 31, 41, 33, 32, 34, 50, 47, 43, 42
OFFSET
1,1
COMMENTS
Conjecture 1: a(n) exists for all n.
Conjecture 2: There exists an upper bound c such that a(n) < c for all n.
The conjectures seem highly likely, especially since a(n) = 0 for almost all n. A lower bound for c is a(1418993) = 73. (Checked to 10^9.) - Charles R Greathouse IV, Oct 28 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Table[Length[NestWhileList[#+IntegerReverse[#]&, n, Min[DigitCount[#]] == 0&]]-1, {n, 70}] (* Harvey P. Dale, Aug 20 2022 *)
PROG
(PARI) fromdigits(v, b=10)=subst(Pol(v), 'x, b) \\ needed for gp < 2.63 or so
A056964(n)=fromdigits(Vecrev(digits(n)))+n
ispan(n)=#Set(digits(n))==10
a(n)=my(k); while(!ispan(n), n=A056964(n); k++); k \\ Charles R Greathouse IV, Oct 28 2014
CROSSREFS
Cf. A056964.
Sequence in context: A143721 A333850 A070725 * A022994 A023480 A036743
KEYWORD
nonn,base,easy
AUTHOR
Felix Fröhlich, Oct 26 2014
STATUS
approved