login
A249039
a(1)=1, a(2)=2; thereafter a(n) = a(n-1) + a(n-1-(number of even terms so far)) + a(n-1-(number of odd terms so far)).
3
1, 2, 4, 7, 11, 17, 26, 37, 52, 70, 92, 120, 157, 200, 254, 323, 401, 490, 597, 719, 859, 1021, 1211, 1438, 1687, 1979, 2325, 2740, 3183, 3704, 4262, 4863, 5553, 6350, 7201, 8174, 9216, 10336, 11545, 12894, 14350, 15928, 17646, 19526, 21596, 23893, 26352, 29060, 32060, 35406, 39167
OFFSET
1,2
COMMENTS
Suggested by A006336, A007604 and A249036-A249038.
LINKS
FORMULA
For n > 1: a(n+1) = a(n) + a(n - A249040(n)) + a(n - A249041(n)) by mutual recursion. - Reinhard Zumkeller, Nov 11 2014
MAPLE
M:=100;
v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1; x[1]:=1; x[2]:=1;
for n from 3 to M do
v[n]:=v[n-1]+v[n-1-w[n-1]]+v[n-1-x[n-1]];
if v[n] mod 2 = 0 then w[n]:=w[n-1]+1; x[n]:=x[n-1];
else w[n]:=w[n-1]; x[n]:=x[n-1]+1; fi;
od:
[seq(v[n], n=1..M)]; # A249039
[seq(w[n], n=1..M)]; # A249040
[seq(x[n], n=1..M)]; # A249041
PROG
(Haskell)
import Data.List (genericIndex)
a249039 n = genericIndex a249039_list (n - 1)
a249039_list = 1 : 2 : f 2 2 1 1 where
f x u v w = y : f (x + 1) y (v + 1 - mod y 2) (w + mod y 2)
where y = u + a249039 (x - v) + a249039 (x - w)
-- Reinhard Zumkeller, Nov 11 2014
CROSSREFS
A249040 and A249041 give numbers of even and odd terms so far.
Sequence in context: A194805 A084842 A289177 * A342492 A280962 A096967
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 26 2014
STATUS
approved