login
A249036
a(1)=1, a(2)=2; thereafter a(n) = a(n-1-(number of even terms so far)) + a(n-1-(number of odd terms so far)).
4
1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47
OFFSET
1,2
COMMENTS
Suggested by A006336 and A007604.
LINKS
MAPLE
M:=100;
v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1; x[1]:=1; x[2]:=1;
for n from 3 to M do
v[n]:=v[n-1-w[n-1]]+v[n-1-x[n-1]];
if v[n] mod 2 = 0 then w[n]:=w[n-1]+1; x[n]:=x[n-1];
else w[n]:=w[n-1]; x[n]:=x[n-1]+1; fi;
od:
[seq(v[n], n=1..M)]; # A249036
[seq(w[n], n=1..M)]; # A249037
[seq(x[n], n=1..M)]; # A249038
MATHEMATICA
Nest[Append[#, #[[Length@Select[#, OddQ]]] + #[[Length@Select[#, EvenQ]]]] &, {1, 2}, 75] (* Ivan Neretin, May 02 2016 *)
CROSSREFS
A249037 and A249038 give numbers of even and odd terms so far.
Sequence in context: A097369 A371625 A257808 * A096607 A103416 A029091
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 26 2014
STATUS
approved