OFFSET
1,2
COMMENTS
It is well known that sum{1/Binomial[2h, h], h = 0..infinity} = r (approximately 0.7363998); this sequence gives a measure of the convergence rate. It appears that a(n+1) - a(n) is in {0,1} for n >= 1.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..2000
EXAMPLE
Let s(n) = sum{1/Binomial[2h, h], h = 0..n}. Approximations are shown here:
n ... r - s(n) ..... 1/3^n
1 ... 0.2364 ....... 0.33333
2 ... 0.0697332 .... 0.11111
3 ... 0.0197332 .... 0.037037
4 ... 0.00544748 ... 0.012345
5 ... 0.00147922 ... 0.004115
a(3) = 3 because r - s(3) < 1/27 < r - s(2).
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 02 2014
STATUS
approved