login
A248145
Consider the partition of the positive odd integers into minimal blocks such that concatenation of numbers in each block is a number of the form 3^k*prime, k>=0. Sequence lists numbers of odd integers in the blocks.
4
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 7, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 5, 11, 7, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 348, 2, 20, 30, 453, 2, 1, 2, 3, 17, 1, 219, 1, 2, 4, 10, 1, 2, 1, 1, 46, 1303, 4, 2, 1, 2, 2, 1
OFFSET
1,1
COMMENTS
3^m, m>=1, is of the considered form 3^k*prime, k=m-1>=0, prime=3.
The first blocks of the partition are |1,3|,|5|,|7|,|9|,|11|,|13|,|15|,|17|,|19|,|21|,|23|,|25,27,29|,|31|,|33|,|35,37|,...
EXAMPLE
The 12th block of partition is |25,27,29|, since we have 25=5^2, 2527=7*19^2, 252729=3^2*28081, and only the last number is of the required form. So a(12)=3.
PROG
(Python)
from gmpy2 import is_prime
from itertools import count, islice
def c(n):
if n < 3: return False
while n%3 == 0: n //= 3
return n == 1 or is_prime(n)
def agen(): # generator of terms
i = 1
while True:
s, an = str(i), 1
while not c(t:=int(s)): i += 2; s += str(i); an += 1
yield an
i += 2
print(list(islice(agen(), 78))) # Michael S. Branicky, Oct 05 2024
CROSSREFS
Sequence in context: A069347 A161606 A300362 * A171398 A113607 A351352
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Oct 02 2014
EXTENSIONS
a(43) and beyond from Michael S. Branicky, Oct 05 2024
STATUS
approved