login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188913
Binomial convolution of the binomial coefficients bin(3n,n) (A005809) and bin(3n,n)/(2n+1) (A001764).
3
1, 4, 24, 168, 1300, 10896, 97734, 928752, 9262116, 96091440, 1029267888, 11311712352, 126921365298, 1448378629600, 16760687848890, 196237061599008, 2320532776851972, 27676644749022672, 332568471941572944, 4022574792189178080
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k=0..n).
E.g.f.: F(1/3,2/3;1/2,1;27*x/4)*F(1/3,2/3;1,3/2;27*x/4), where F(a1,a2;b1,b2;z) is a hypergeometric series.
Recurrence: 8*n^2 * (2*n+1)^2 * (9*n^3 - 54*n^2 + 84*n - 35)*a(n) = 24*(324*n^7 - 2187*n^6 + 4689*n^5 - 4185*n^4 + 1464*n^3 + 122*n^2 - 223*n + 44)*a(n-1) - 18*(3645*n^7 - 30618*n^6 + 96066*n^5 - 144585*n^4 + 103662*n^3 - 21834*n^2 - 10860*n + 4480)*a(n-2) + 2187*(n-2)*(n-1)*(3*n-7)*(3*n-5)*(9*n^3 - 27*n^2 + 3*n + 4)*a(n-3). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 3^(3*n+1) / (Pi*n^2*2^(n+1)). - Vaclav Kotesovec, Feb 25 2014
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[3k, k]Binomial[3n-3k, n-k]/(2n-2k+1), {k, 0, n}], {n, 0, 22}]
PROG
(Maxima) makelist(sum(binomial(n, k)*binomial(3*k, k)*binomial(3*n-3*k, n-k)/(2*n-2*k+1), k, 0, n), n, 0, 12);
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(3*k, k)*binomial(3*n-3*k, n-k)/(2*n-2*k+1));
vector(66, n, a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 13 2011
STATUS
approved