login
A246028
a(n) = Product_{i in row n of A245562} Fibonacci(i+1).
3
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 5, 8, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 2, 2, 2, 4, 2, 2, 4, 6, 3, 3, 3, 6, 5, 5, 8, 13, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 5, 8, 2, 2, 2, 4, 2
OFFSET
0,4
COMMENTS
This is the Run Length Transform of S(n) = Fibonacci(n+1).
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).
LINKS
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
FORMULA
a(n) = Sum_{k=0..n} ((binomial(n-k,2k)*binomial(n,k)) mod 2). - Chai Wah Wu, Oct 19 2016
MAPLE
with(combinat); ans:=[];
for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
for i from 1 to L1 do
if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
elif out1 = 0 and t1[i] = 1 then c:=c+1;
elif out1 = 1 and t1[i] = 0 then c:=c;
elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
fi;
if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
od:
a:=mul(fibonacci(i+1), i in lis);
ans:=[op(ans), a];
od:
ans;
MATHEMATICA
a[n_] := Sum[Mod[Binomial[n-k, 2k] Binomial[n, k], 2], {k, 0, n}];
a /@ Range[0, 100] (* Jean-François Alcover, Feb 28 2020, after Chai Wah Wu *)
PROG
(PARI) a(n)=my(s=1, k); while(n, n>>=valuation(n, 2); k=valuation(n+1, 2); if(k>1, s*=fibonacci(k+1)); n>>=k); s \\ Charles R Greathouse IV, Oct 21 2016
(PARI) a(n)=sum(k=0, n, !bitand(n-3*k, 2*k) && !bitand(n-k, k)) \\ Charles R Greathouse IV, Oct 21 2016
(Python)
def A246028(n): return sum(int(not (~(n-k) & 2*k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 27 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 15 2014; revised Sep 05 2014
STATUS
approved