login
A325757
Irregular triangle read by rows giving the frequency span of n.
3
1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 3, 2, 2, 2, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 2, 2, 6, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 1, 1, 1, 1, 4, 7, 1, 1, 1, 1, 2, 2, 2, 2, 8, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 4, 1, 1, 1, 2, 5, 9, 1, 1, 1, 1, 1, 1, 2, 2, 3
OFFSET
1,2
COMMENTS
We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer is the frequency span of its prime indices (row n of A296150).
EXAMPLE
Triangle begins:
1:
2: 1
3: 2
4: 1 1 2
5: 3
6: 1 1 1 2 2
7: 4
8: 1 1 1 3
9: 2 2 2
10: 1 1 1 2 3
11: 5
12: 1 1 1 1 1 2 2 2
13: 6
14: 1 1 1 2 4
15: 1 1 2 2 3
16: 1 1 1 1 4
17: 7
18: 1 1 1 1 2 2 2 2
19: 8
20: 1 1 1 1 1 2 2 3
21: 1 1 2 2 4
22: 1 1 1 2 5
23: 9
24: 1 1 1 1 1 1 2 2 3
25: 2 3 3
26: 1 1 1 2 6
27: 2 2 2 3
28: 1 1 1 1 1 2 2 4
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
freqspan[ptn_]:=If[Length[ptn]<=1, ptn, Sort[Join[ptn, freqspan[Sort[Length/@Split[ptn]]]]]];
Table[freqspan[primeMS[n]], {n, 15}]
CROSSREFS
Row lengths are A325249.
Run-lengths are A325758.
Number of distinct terms in row n is A325759(n).
Sequence in context: A246028 A232186 A340061 * A161161 A350357 A136277
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 19 2019
STATUS
approved