login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243856
Number of numbers in row n of the array at A243855.
4
1, 2, 2, 3, 4, 7, 11, 17, 27, 44, 70, 111, 176, 281, 447, 712, 1130, 1797, 2856, 4549, 7233, 11517, 18317, 29163, 46389, 73838, 117503, 187047, 297690, 473909, 754298, 1200808
OFFSET
1,2
COMMENTS
Decree that (row 1) = (1) and (row 2) = (3,2). For n >= 4, row n consists of numbers in decreasing order generated as follows: x+1 for each x in row n-1 together with 3/x for each x in row n-1, and duplicates are rejected as they occur. Then a(n) = (number of numbers in row n); it appears that this sequence is not linearly recurrent.
EXAMPLE
First 6 rows of the array of rationals:
1/1
4/1 ... 2/1
5/1 ... 3/1
6/1 ... 4/3 ... 4/5
7/1 ... 7/3 ... 9/5 ... 2/3
8/1 ... 10/3 ... 14/5 .. 20/9 .. 12/7 .. 5/3 .. 4/7, so that A243856 begins with 1,2,2,3,4,7.
MATHEMATICA
z = 12; g[1] = {1}; f1[x_] := x + 1; f2[x_] := 4/x; h[1] = g[1];
b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
u = Table[Reverse[g[n]], {n, 1, z}]; v = Flatten[u];
Denominator[v] (* A243854 *)
Numerator[v] (* A243855 *)
Table[Length[g[n]], {n, 1, z}] (* A243856 *)
CROSSREFS
Sequence in context: A245620 A059348 A110871 * A173433 A053638 A051920
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 12 2014
STATUS
approved