OFFSET
1,7
COMMENTS
Decree that (row 1) = (1). For n >= 2, row n consists of numbers in decreasing order generated as follows: x+1 for each x in row n-1 together with 4/x for each x in row n-1, and duplicates are rejected as they occur. Every positive rational number occurs exactly once in the resulting array.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..3000
EXAMPLE
First 6 rows of the array of rationals:
1/1
4/1 ... 2/1
5/1 ... 3/1
6/1 ... 4/3 ... 4/5
7/1 ... 7/3 ... 9/5 ... 2/3
8/1 ... 10/3 ... 14/5 .. 20/9 .. 12/7 .. 5/3 .. 4/7
The denominators, by rows: 1,1,1,1,1,1,3,5,1,3,5,3,1,3,5,9,7,3,7.
MATHEMATICA
z = 12; g[1] = {1}; f1[x_] := x + 1; f2[x_] := 4/x; h[1] = g[1];
b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
u = Table[Reverse[g[n]], {n, 1, z}]; v = Flatten[u];
Denominator[v] (* A243854 *)
Numerator[v] (* A243855 *)
Table[Length[g[n]], {n, 1, z}] (* A243856 *)
CROSSREFS
KEYWORD
nonn,easy,tabf,frac
AUTHOR
Clark Kimberling, Jun 12 2014
STATUS
approved