login
A241745
Number of partitions p of n such that (number of numbers in p of form 3k) > (number of numbers in p of form 3k+1).
3
0, 0, 0, 1, 0, 1, 2, 1, 3, 4, 4, 8, 10, 13, 19, 24, 34, 45, 59, 79, 99, 130, 170, 212, 273, 348, 425, 546, 678, 833, 1041, 1284, 1558, 1940, 2351, 2862, 3496, 4227, 5093, 6187, 7409, 8920, 10706, 12795, 15277, 18259, 21671, 25803, 30579, 36218, 42836, 50596
OFFSET
0,7
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
FORMULA
a(n) + A241744(n) + A241845(n) = A000041(n) for n >= 0.
EXAMPLE
a(8) counts these 3 partitions: 62, 53, 332.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k];
Table[Count[f[n], p_ /; s[0, p] < s[2, p]], {n, 0, z}] (* A241743 *)
Table[Count[f[n], p_ /; s[0, p] == s[1, p]], {n, 0, z}] (* A241744 *)
Table[Count[f[n], p_ /; s[0, p] > s[1, p]], {n, 0, z}] (* A241745 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 28 2014
STATUS
approved