OFFSET
0,4
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
EXAMPLE
a(8) counts these 12 partitions: 71, 521, 5111, 44, 431, 422, 4211, 41111, 22211, 221111, 2111111, 11111111.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k];
Table[Count[f[n], p_ /; s[0, p] < s[2, p]], {n, 0, z}] (* A241743 *)
Table[Count[f[n], p_ /; s[0, p] == s[1, p]], {n, 0, z}] (* A241744 *)
Table[Count[f[n], p_ /; s[0, p] > s[1, p]], {n, 0, z}] (* A241745 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 28 2014
STATUS
approved