login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233656
a(n) = 3*a(n-1) - 2*(n-1), with a(0) = 1.
0
1, 3, 7, 17, 45, 127, 371, 1101, 3289, 9851, 29535, 88585, 265733, 797175, 2391499, 7174469, 21523377, 64570099, 193710263, 581130753, 1743392221, 5230176623, 15690529827, 47071589437, 141214768265, 423644304747, 1270932914191, 3812798742521, 11438396227509, 34315188682471
OFFSET
0,2
COMMENTS
Inverse binomial transform of this sequence is A090129.
Conjecture: Last digit of a(n) has repeating pattern of 20 digits as follows: {1, 3, 7, 7, 5, 7, 1, 1, 9, 1, 5, 5, 3, 5, 9, 9, 7, 9, 3, 3}, with an equal frequency of the five odd digits.
FORMULA
a(n) = 3*a(n-1) - 2*(n-1), with a(0) = 1.
(a(n+1) - a(n))/2 = A007051(n).
From Colin Barker, Dec 17 2013: (Start)
a(n) = (1 + 3^n + 2*n)/2.
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
G.f.: (x^2+2*x-1) / ((x-1)^2*(3*x-1)). (End)
E.g.f.: exp(x)*(1 + exp(2*x) + 2*x)/2. - Stefano Spezia, Mar 20 2022
EXAMPLE
a(1) = 3*1 - 2*0 = 3;
a(2) = 3*3 - 2*1 = 7.
MATHEMATICA
LinearRecurrence[{5, -7, 3}, {1, 3, 7}, 30] (* Harvey P. Dale, Feb 13 2015 *)
PROG
(PARI) Vec((x^2+2*x-1)/((x-1)^2*(3*x-1)) + O(x^100)) \\ Colin Barker, Dec 17 2013
CROSSREFS
Sequence in context: A210839 A261235 A211281 * A106191 A062810 A113985
KEYWORD
nonn,easy
AUTHOR
Richard R. Forberg, Dec 14 2013
STATUS
approved