login
A232466
Number of dependent sets with largest element n.
24
0, 0, 1, 2, 4, 10, 20, 44, 93, 198, 414, 864, 1788, 3687, 7541, 15382, 31200, 63191, 127482, 256857, 516404, 1037104, 2080357, 4170283, 8354078, 16728270
OFFSET
1,4
COMMENTS
Let S be a set of positive integers. If S can be divided into two subsets which have equal sums, then S is said to be a dependent set.
Dependent sets are also called biquanimous sets. Biquanimous partitions are counted by A002219 and ranked by A357976. - Gus Wiseman, Apr 18 2024
REFERENCES
J. Bourgain, Λ_p-sets in analysis: results, problems and related aspects. Handbook of the geometry of Banach spaces, Vol. I,195-232, North-Holland, Amsterdam, 2001.
EXAMPLE
From Gus Wiseman, Apr 18 2024: (Start)
The a(1) = 0 through a(6) = 10 sets:
. . {1,2,3} {1,3,4} {1,4,5} {1,5,6}
{1,2,3,4} {2,3,5} {2,4,6}
{1,2,4,5} {1,2,3,6}
{2,3,4,5} {1,2,5,6}
{1,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,2,3,4,6}
{1,2,4,5,6}
{2,3,4,5,6}
(End)
MAPLE
b:= proc(n, i) option remember; `if`(i<1, `if`(n=0, {0}, {}),
`if`(i*(i+1)/2<n, {}, b(n, i-1) union map(p-> p+x^i,
b(n+i, i-1) union b(abs(n-i), i-1))))
end:
a:= n-> nops(b(n, n-1)):
seq(a(n), n=1..15); # Alois P. Heinz, Nov 24 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[i<1, If[n == 0, {0}, {}], If[i*(i+1)/2 < n, {}, b[n, i-1] ~Union~ Map[Function[p, p+x^i], b[n+i, i-1] ~Union~ b[Abs[n-i], i-1]]]]; a[n_] := Length[b[n, n-1]]; Table[Print[a[n]]; a[n], {n, 1, 24}] (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)
biqQ[y_]:=MemberQ[Total/@Subsets[y], Total[y]/2];
Table[Length[Select[Subsets[Range[n]], MemberQ[#, n]&&biqQ[#]&]], {n, 10}] (* Gus Wiseman, Apr 18 2024 *)
PROG
(PARI) dep(S, k=0)=if(#S<2, return(if(#S, S[1], 0)==k)); my(T=S[1..#S-1]); dep(T, abs(k-S[#S]))||dep(T, k+S[#S])
a(n)=my(S=[1..n-1]); sum(i=1, 2^(n-1)-1, dep(vecextract(S, i), n)) \\ Charles R Greathouse IV, Nov 25 2013
CROSSREFS
Column k=2 of A248112.
First differences of A371791.
The complement is counted by A371793, differences of A371792.
This is the "bi-" case of A371797, differences of A371796.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
Sequence in context: A307768 A370583 A297183 * A003407 A151523 A317708
KEYWORD
nonn,more
AUTHOR
David S. Newman, Nov 24 2013
EXTENSIONS
a(9)-a(24) from Alois P. Heinz, Nov 24 2013
a(25) from Alois P. Heinz, Sep 30 2014
a(26) from Alois P. Heinz, Sep 17 2022
STATUS
approved