login
A232464
Number of compositions of n avoiding the pattern 1111.
12
1, 1, 2, 4, 7, 15, 26, 52, 93, 173, 310, 556, 1041, 1789, 3098, 5620, 9725, 16377, 28764, 48518, 82889, 137161, 237502, 390084, 646347, 1055975, 1774036, 2907822, 4698733, 7581093, 12381660, 19891026, 32113631, 51110319, 80777888, 130175410, 204813395
OFFSET
0,3
COMMENTS
Number of compositions of n into parts with multiplicity <= 3.
LINKS
EXAMPLE
a(5) = 15: [5], [4,1], [3,2], [2,3], [1,4], [1,2,2], [2,1,2], [1,1,3], [3,1,1], [2,2,1], [1,3,1], [1,2,1,1], [2,1,1,1], [1,1,2,1], [1,1,1,2].
a(6) = 26: [6], [3,3], [5,1], [4,2], [2,4], [1,5], [4,1,1], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [2,2,2], [1,3,2], [1,2,3], [2,1,3], [1,1,4], [1,2,2,1], [2,1,2,1], [1,1,3,1], [3,1,1,1], [2,2,1,1], [1,3,1,1], [1,2,1,2], [2,1,1,2], [1,1,2,2], [1,1,1,3].
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(b(n-i*j, i-1, p+j)/j!, j=0..min(n/i, 3))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50);
MATHEMATICA
f[list_]:=Apply[And, Table[Count[list, i]<4, {i, 1, Max[list]}]];
g[list_]:=Length[list]!/Apply[Times, Table[Count[list, i]!, {i, 1, Max[list]}]];
a[n_] := If[n == 0, 1, Total[Map[g, Select[IntegerPartitions[n], f]]]];
Table[a[n], {n, 0, 40}] (* Geoffrey Critzer, Nov 25 2013, updated by Jean-François Alcover, Nov 20 2023 *)
CROSSREFS
Cf. A001935 (partitions avoiding 1111), A032020 (pattern 11), A232432 (pattern 111), A232394 (consecutive pattern 1111).
Column k=3 of A243081.
Sequence in context: A027167 A259090 A358832 * A264292 A259592 A291220
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 24 2013
STATUS
approved