OFFSET
1,4
COMMENTS
An unlabeled rooted tree is aperiodic and relatively prime iff either it is a single node or a single node with a single aperiodic relatively prime branch, or the branches directly under any given node have empty intersection (relatively prime) and also have relatively prime multiplicities (aperiodic) and are themselves aperiodic relatively prime trees.
LINKS
EXAMPLE
The a(6) = 10 aperiodic relatively prime trees:
(((((o)))))
(((o(o))))
((o((o))))
((oo(o)))
(o(((o))))
(o(o(o)))
((o)((o)))
(oo((o)))
(o(o)(o))
(ooo(o))
MATHEMATICA
rurt[n_]:=If[n==1, {{}}, Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]], Or[Length[#]==1, And[Intersection@@#=={}, GCD@@Length/@Split[#]==1]]&], {ptn, IntegerPartitions[n-1]}]];
Table[Length[rurt[n]], {n, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 05 2018
STATUS
approved