login
A218744
a(n) = (41^n - 1)/40.
6
0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
OFFSET
0,3
COMMENTS
Partial sums of powers of 41 (A009985).
FORMULA
a(n) = floor(41^n/40).
G.f.: x/((1-x)*(1-41*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 42*a(n-1) - 41*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(21*x)*sinh(20*x)/20. - Elmo R. Oliveira, Aug 27 2024
MATHEMATICA
LinearRecurrence[{42, -41}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
PROG
(PARI) A218744(n)=41^n\40
(Magma) [n le 2 select n-1 else 42*Self(n-1)-41*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(Maxima) A218744(n):=(41^n-1)/40$
makelist(A218744(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved