login
A217599
Prime(n), where n is such that (Sum_{i=1..n} prime(i)^2) / n is an integer.
94
2, 67, 157, 3217, 3637, 4201, 231947, 2790569, 30116309, 12021325961, 26144296151, 1380187561637, 6549419699279, 735325088697473, 1746583001138813, 68725636353488501
OFFSET
1,1
COMMENTS
a(16) > 3*10^15 if it exists. - Anders Kaseorg, Dec 02 2020
EXAMPLE
a(2) = 67, because 67 is the 19th prime and the sum of the first 19 primes^2 = 24966 when divided by 19 equals 1314 which is an integer.
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^2; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* T. D. Noe, Mar 19 2013 *)
k = 1; p = 2; s = 0; lst = {}; While[p < 1000000000, s = s + p^2; If[ Mod[s, k++] == 0, AppendTo[lst, p]]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Mar 08 2015 *)
PROG
(PARI) n=s=0; forprime(p=2, 1e9, if((s+=p^2)%n++==0, print1(p", "))) \\ Charles R Greathouse IV, Feb 06 2015
CROSSREFS
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Sequence in context: A030472 A106998 A275114 * A107214 A371509 A174602
KEYWORD
nonn,more
AUTHOR
Robert Price, Mar 19 2013
EXTENSIONS
a(13) from Willem Hengeveld, Nov 29 2020
a(14)-a(15) from Anders Kaseorg, Dec 02 2020
a(16) from Paul W. Dyson, Sep 03 2022
STATUS
approved