login
A275114
Primes p for which the sum of the numbers in the Collatz iteration (A033493) of p is a prime.
0
2, 67, 149, 163, 229, 359, 373, 401, 571, 719, 727, 827, 919, 941, 1031, 1049, 1129, 1153, 1201, 1283, 1307, 1319, 1433, 1453, 1627, 1637, 1987, 2017, 2089, 2137, 2237, 2267, 2281, 2351, 2543, 2617, 2731, 2819, 2851, 2861, 2927, 2969, 3191, 3253, 3581, 3671, 3719
OFFSET
1,1
COMMENTS
Primes p such that A033493(p) is a prime.
Prime terms from A225748.
LINKS
Eric Weisstein's World of Mathematics, Collatz Problem
EXAMPLE
Prime 67 with Collatz trajectory (67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1) is a term because A033493(67) = 1459 (prime).
MATHEMATICA
Select[Prime@ Range@ 540, PrimeQ[Total@ FixedPointList[Which[# == 1, 1, EvenQ@ #, #/2, True, 3 # + 1] &, #] - 1] &] (* Michael De Vlieger, Jul 17 2016, after Alonso del Arte at A033493 *)
PROG
(Magma) [n: n in [1..4000] | IsPrime(&+[k eq 1 select n else IsOdd(Self(k-1)) and not IsOne(Self(k-1)) select 3*Self(k-1)+1 else Self(k-1) div 2: k in [1..5*n]]) and IsPrime(n)]
CROSSREFS
Sequence in context: A065721 A030472 A106998 * A217599 A107214 A371509
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 17 2016
STATUS
approved